Antiviral wirksame Halbleiter – Umsetzungsmöglichkeiten für die Praxis

Rainer Adelung

Institut for Materials Science - Functional Nanomaterials

• Flame Transport Synthesis for ZnO & SnO₂

- Cytotoxicity
- Antiviral activities of semiconductors
- Into pharmacy and therapy ...

Example for a II-VI semiconductor: ZnO

- Transparent, hexagonal crystals
- Micro crystals: White powder
- White pigment for wall paint
- Medical use due to antiseptic effects:
- Dental treatment (root channel)
- Treated as biomaterial
- Transparent conducting oxide for LED, TFT, solar cells, ...
- Piezo electric
- Photocatalytic
- Nanostructures for beginners...
- ZnO in title > 12.000 papers last 3 years
- ACS nano rejects manuscripts containing ZnO
- Perfect for overstuffed talk

• in general, very low toxicity...

Zinkoxid and Cells: cytotoxicity...

Morphology (A–D) and cytotoxicity (E) of ZnO-T structures synthesized at different dates.

- reproducible (often difficult with ZnO)
- oxygen vacancies change under ambient conditions
- normal human dermal fibroblasts (NHDF), MTT assay

H. Papavlassopoulos, Y. K. Mishra, S. Kaps, I. Paulowicz, R. Abdelaziz, M. Elbahri, E. Maser, R. Adelung & C. Röhl "Toxicity of functional nano-micro zinc oxide tetrapods: Impact of cell culture conditions, cellular age and material properties" PloS one 9 e84983 (2014) 0

- Geometry has influence
- surface treatment shows tendency
- Cell density shows an effect

Envelope proteins
(gB-gN)

Lipid envelope

Tegument

Nucleocapsid

Transmission electron microscopy of a Virion

Herpes Virus (HSV-1)

Virus = DNA / RNA program code Viral particle (virion) = Virus with shell for traveling through the human

HSV 2: 536 million infected people

How to exist as virus? HSV-1

Christian-Albrechts-Universität zu Kiel

Journal home > Archive > Review > Full text > Figure 1

FIGURE 1 | Herpesvirus entry.

FROM THE FOLLOWING ARTICLE:

Fusing structure and function: a structural view of the herpesvirus entry machinery

Sarah A. Connolly, Julia O. Jackson, Theodore S. Jardetzky & Richard Longnecker Nature Reviews Microbiology 9, 369-381 (May 2011)

Binding to the host cell

early and late mRI

nuclear pore

cytoskelet

Fusion with the host cell membrane

Pore formation

Tethering

Receptor-induced triggering

Hemifusion

s the cell

trates the cell core ram will be started the tegument its he program ing and fabrication n

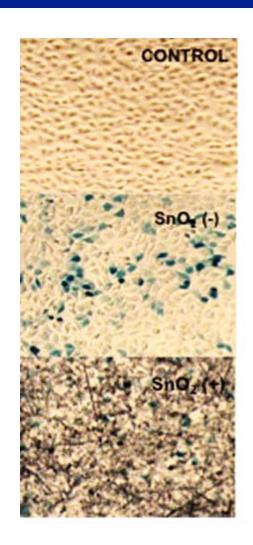
Grab the virion with the surface doping sites... (oxygen vacancies)

Y. K. Mishra, R. Adelung, C. Röhl, D. Shukla, F. Spors & V. Tiwari "Virostatic potential of micro--nano filopodia-like ZnO structures against herpes simplex virus-1" Antiviral research 92 305-312 (2011)

Fluorescently labeled T-ZnO binds HSV-2(333) GFP virus

Neutr. Proph. Therap. inhibits entry

- Neutralization, prophylaxis, therapeutic treatment inhibits HSV-2 entry.
- b-galactosidase-expressing reporter virus, HSV-2(333)gJ
- UV treated (UV) or non-UV treated (NUV) ZnOTs were tested.


T. E. Antoine, Y. K. Mishra, J. Trigilio, V. Tiwari, R. Adelung & D. Shukla, Antiviral research 96 363-375 (2012)

Internalization: Western blot

- Decreased internalization of HSV-2(333)
- Western blot performed to determine the effect of T-ZnO on HSV-2 internalization.
- The cell lysates were prepared at 2 h post infection and Western blots were performed.

SnO₂: Cell entry inhibition as well

SnO₂ inhibits HSV-1 entry into HCE cells as well.

 $SnO_2(+)$

Negative Control

 $SnO_2(-)$

J. Trigilio, T. E. Antoine, I. Paulowicz, Y. K. Mishra, R. Adelung & D. Shukla "Tin oxide nanowires suppress herpes simplex virus-1 entry and cell-to-cell membrane fusion" PloS one 7 e48147 (2012)

Vaccine effect: Alarming the immune system

CAU

Christian-Albrechts-Universität zu Kiel

Thessicar E. Antoine, Satvik Hadigal, Abraam Yakoub, Yogendra Kumar Mishra, Palash Bhattacharya, Christine Haddad, Tibor Valyi-Nagy, Rainer Adelung, Bellur S. Prabhakar, Deepak Shukla, "Intra-vaginal Zinc Oxide Tetrapod Nanoparticles as Novel Immunoprotective Agents against Genital Herpes", Journal of Immunology 196, 4566 (2016)

From lab to pharmacy

- ZnO is an accepted active agent
- Pharmacists in Germany are allowed to prepare standard formulations
- Effect should not be announced...

- ZnO as approved medical device
- HPV on the way, HIV has to be tested urgently
- Probably much more semiconductors relevant for medical applications

Pores (Pat. Pend.) with under cuts for mechanical interlocking

Acknowledgement/Conclusion

Christian-Albrechts-Universität zu Kiel

€ S.-H. &

DFG: SFB 677, SFB 1261, FOR 2093

BMBF

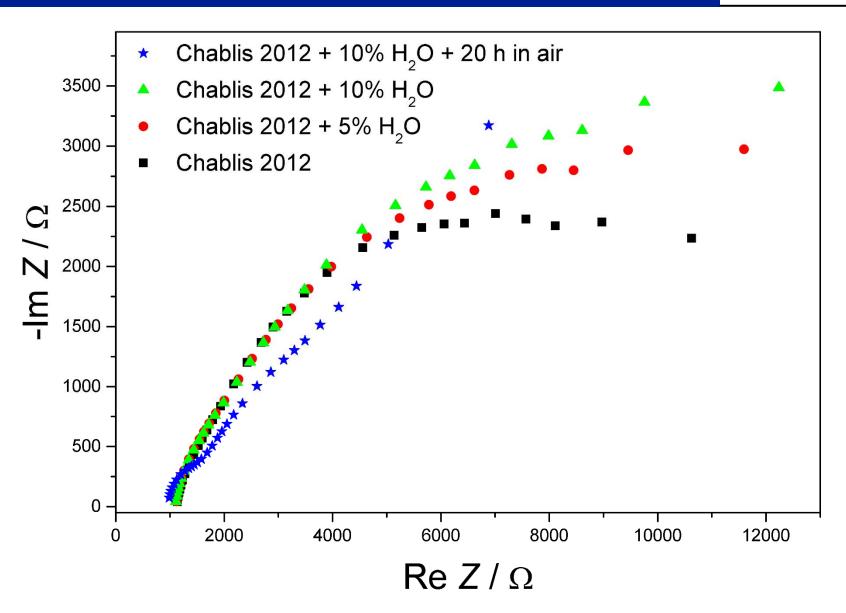
BMWI (DKL-WEA, DLC4marin, WWZ)

AvH

EU: Graphene Flagship/Flag Era

GRAPHENE FLAGSHIP

New techniques enable multifunctional & intelligent medical materials


- (Oxid)-Semiconductors have shape dependant variaty in cytotoxicity
- (Oxid)-Semiconductors can be effective against viruses by immobilization
- More studies important: e.g. HPV,HIV,...?
- Is there therapy possible beyond patented formulations? New semiconductor pharma?

Oxide Semiconductors as antiviral agents: Herpes therapy from Lab to Pharmacy

Herpes simplex viruses (HSV) establish lifelong infections, and the virus cannot yet be eradicated from the body. The HSV-2 type is one of the most frequent sexually transmitted infections worldwide with global estimates of 536 million infected people and an annual incidence of 23.6 million cases[1]. In this presentation, the antiviral potential of oxide semiconductors as antiviral agents will be discussed [2-4]. Oxygen vacancies are employed as adhesion sites of glycoproteins on the surface of the capsid and bind the virus effectively. It will be shown that oxid semiconductors can have a prophylactic, therapeutic as well as neutralizing effect. It will be explained how irradiation of UV-light can even increase the antiviral activity. The cytotoxic effects [4] of the micro-crystalline material is discussed as well as how the material could be brought from lab into pharmacies.

- [1] E. Tronstein, C. Johnston, M.L. Huang, S. Selke, A. Magaret, T. Warren, L. Corey, A. Wald "Genital shedding of herpes simplex virus among symptomatic and asymptomatic persons with HSV-2 infection" The Journal of the American Medical Association, 305 (2011), pp. 1441
- [2] Y. K. Mishra, R. Adelung, C. Röhl, D. Shukla, F. Spors & V. Tiwari "Virostatic potential of micro--nano filopodia-like ZnO structures against herpes simplex virus-1" Antiviral research 92 305-312 (2011)
- [3] T. E. Antoine, Y. K. Mishra, J. Trigilio, V. Tiwari, R. Adelung & D. Shukla "Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection" Antiviral research 96 363-375 (2012)
- [4] J. Trigilio, T. E. Antoine, I. Paulowicz, Y. K. Mishra, R. Adelung & D. Shukla "Tin oxide nanowires suppress herpes simplex virus-1 entry and cell-to-cell membrane fusion" PloS one 7 e48147 (2012)
- [5] H. Papavlassopoulos, Y. K. Mishra, S. Kaps, I. Paulowicz, R. Abdelaziz, M. Elbahri, E. Maser, R. Adelung & C. Röhl "Toxicity of functional nano-micro zinc oxide tetrapods: Impact of cell culture conditions, cellular age and material properties" PloS one 9 e84983 (2014)

Raman spectroscopy aspirin

